• Физико-математические науки

граничных функции получена явная аналитическая формула решений. Доказана теорема об асимптотической оценке решения рассматриваемой краевой задачи.

Ключевые слова: фундаментальная система решений, функция Коши, граничные функций, сингулярное

возмущение, малый параметр, асимптотика

Abdikerimova Zh.K.

Asymptotic estimates of solution for integro differential equations in the highest derivatives

Summary. The thesis deals with the singularly perturbed boundary value problem for third order linear integrodifferential equation with a small parameter in the highest derivatives, provided that the roots of additional distinctive equation have same signs. In this paper for a singularly-perturbed homogeneous differential equation are constructed a fundamental system of solutions, initial and boundary functions, and their asymptotic estimates are derived. With initial and boundary functions are obtained explicit analytical formula solutions. The theorem about asymptotic estimate of a solution of boundary value problem is proved.

Key words: fundamental system of solutions, Cauchy function, boundary functions, small parameter, singular perturbation, asymptotics

УДК 629.78

С.А. Елубаев, Т.М. Бопеев, К.А. Алипбаев, А.С. Сухенко (ДТОО «Институт космической техники и технологий», Алматы, Республика Казахстан, anna.sukhenko@gmail.com)

РАЗРАБОТКА И ТЕСТИРОВАНИЕ ПРОГРАММНО-МАТЕМАТИЧЕСКОГО ОБЕСПЕЧЕНИЯ ЗВЕЗДНОГО ДАТЧИКА

Аннотация. Статья посвящена разработке и тестированию программно-математического обеспечения казахстанского звёздного датчика. Описаны математические модели и алгоритмы, положенные в основу разработки программно-математического обеспечения предварительной обработки изображения, распознавания звезд и определения ориентации. Приведены результаты тестирования программно-математического обеспечения звездного датчика с помощью программного имитационного комплекса, включающего имитатор звездного неба и блок анализа результатов.

Ключевые слова: звездный датчик, программно-математическое обеспечение, программный имитационный комплекс, разработка, тестирование.

Введение

В настоящее время силами отечественных специалистов в Казахстане разрабатывается звездный датчик (ЗД), который в дальнейшем планируется использовать на казахстанских спутниках различного назначения. На первом этапе разработан экспериментальный образец ЗД, который обладает следующими характеристиками: поле зрения 20°, частота обновления 2 Гц, минимальный угол между оптической осью и Солнцем 40°, точность определения ориентации оптической оси/вокруг оптической оси 15/50 уг.сек.

Одной из наиболее наукоемких частей ЗД является его программно-математическое обеспечение (ПМО). Данная статья посвящена разработке и тестированию ПМО экспериментального образца казахстанского ЗД.

1 Программно-математическое обеспечение звездного датчика

Программно-математическое обеспечение казахстанского ЗД базируется на алгоритмах распознавания звезд и определения ориентации. Входными параметрами данных алгоритмов являются текущие координаты звезд в поле зрения ЗД, которые определяются в результате предварительной обработки изображения звездного неба.

1.1 Программно-математическое обеспечение предварительной обработки изображения

Основными этапами предварительной обработки изображения казахстанского ЗД являются радиометрическая коррекция, бинаризация, фильтрация, локализация псевдовзвезд и определение центроидов.

На этапе радиометрической коррекции производится коррекция искажения изображения, обусловленного такими погрешностями, как шум считывания, сдвиг нуля и темновой ток, с помощью матрицы коррекции, которая выводится на основе анализа изображений с детектора, полученных при различных условиях.

В процессе бинаризации изображение обрабатывается с помощью пороговых значений:

$$\mathbf{B} = b(x, y) = \begin{cases} 1, \ f(x, y) \in [T_1, 255], \\ 0, \ f(x, y) \in [0, T_1), \end{cases} \quad x = 1..m, \ y = 1..n ,$$
(1)

где *B* - бинарное изображение; b(x, y) - пиксель бинарного изображения с координатами x, y; f(x, y) - интенсивность пикселя исходного изображения с координатами x, y; *m* - ширина изображения в пикселях; *n* - высота изображения в пикселях.

Пороговое значение бинаризации *T*₁ вычисляется динамически для каждого полученного изображения.

Фильтрация изображения производится с помощью медианного фильтра с квадратным окном, включающим нечетное количество пикселей:

$$P = p(x, y), \ p(i, j) = \begin{cases} 1, \ S_{W_{ij}} \ge \frac{h^2}{2}, \\ 0, \ S_{W_{ij}} < \frac{h^2}{2}, \end{cases}$$
(2)

где P - изображение после фильтрации; p(i, j) - пиксель изображения после фильтрации, имеющий положение i, j; $S_{W_{ij}}$ - количество ненулевых пикселей бинарного изображения в окне фильтра, образованного вокруг пикселя с координатами i, j; h - размер окна фильтра (нечетное число).

После проведения фильтрации производится операция выделения связанных областей или локализация псевдозвезд. Для решения этой задачи в данной работе используется многопроходной алгоритм с четырехсвязными сканирующими масками. В результате проведения локализации на изображении выделяется множество связных областей, которые мы назовем псевдозвездами до момента их распознавания:

$$L = \{L_1, \dots, L_l\}, \ L_i = \{(x_1^{L_i}, y_1^{L_i}), \dots, (x_q^{L_i}, y_q^{L_i})\}, \ (x_j^{L_i}, y_j^{L_i}) \in P, \ j = 1..q,$$
(3)

где L - множество псевдозвезд; L_i - i - я псевдозвезда; $(x_j^{L_i}, y_j^{L_i})$ - пиксель с координатами $x_j^{L_i}, y_j^{L_i}$, входящий в i - ю псевдозвезду; q - количество пикселей в i-ой псевдозвезде; l - количество псевдозвезд на изображении.

На следующем этапе после локализации псевдозвезд производится определение их центроидов в соответствии со следующей формулой:

$$x_{q}^{L_{i}} = \frac{x_{1}^{L_{i}} + \dots + x_{q}^{L_{i}}}{q}, \quad y_{q}^{L_{i}} = \frac{y_{1}^{L_{i}} + \dots + y_{q}^{L_{i}}}{q}, \tag{4}$$

где $x_{u}^{L_{i}}$, $y_{u}^{L_{i}}$ - центроиды і - ой псевдозвезды.

Каз¥ТЗУ хабаршысы №5 2016

1.2 Программно – математическое обеспечение распознавания звезд и определения ориентации

После того, как на изображении выделены псевдозвезды и определены их центроиды $\mathcal{U} = \{\mathcal{U}_1, ..., \mathcal{U}_l\}, \mathcal{U}_i = \{\left(x_u^{L_i}, y_u^{L_i}\right)\}$, производится распознавание псевдозвезд путем их сопоставления со звездным каталогом (ЗК). В большинстве случаев сопоставление производится для угловых расстояний между псевдозвездами, входящими в конфигурацию псевдозвезд в поле зрения ЗД, и угловых расстояний между звездами в ЗК. Основная задача при этом состоит в реализации быстрых методов поиска соответствия в ЗК. Простейшие подобные алгоритмы описаны в работах [1,2]. Алгоритмы, представленные в [3-5], реализуют оптимизацию скорости поиска.

В данной работе для проведения операции распознавания на каждой итерации используется тройка псевдозвезд (триада), построение которой производится на основе ярчайшей псевдозвезды на изображении и двух её ближайших соседей $T_{mex} = \{ \mathcal{U}_i, \mathcal{U}_i, \mathcal{U}_k \}.$

После того, как на изображении выделена триада, для каждой пары псевдозвезд, входящих в нее, рассчитываются угловые расстояния. В результате для текущей триады получается множество угловых расстояний $\Theta = \{\theta_{i-j}, \theta_{i-k}, \theta_{j-k}\}$, которое используется для проведения операции поиска соответствия в ЗК с помощью метода К-вектор, описанного в [5].

В соответствии с методом К-вектор звездный каталог угловых расстояний должен быть упорядочен по возрастанию:

$$D = \{\theta_s : \theta_s \le \theta_{s+1}, q = 1, \dots, M\},\tag{5}$$

где *s* - индекс угловых расстояний между парами звезд, характеризующий их положение в ЗК.

Для проведения операции поиска соответствия каждому элементу ЗК угловых расстояний ставится в соответствие его положение. Данная зависимость аппроксимируется с помощью прямой линии (рисунок 1):

$$\theta_{\rm s} = aq + b,$$

$$a = \frac{\theta_{\rm M} - \theta_{\rm l}}{M - 1}, \quad b = \frac{M\theta_{\rm l} - \theta_{\rm M}}{M - 1},$$
(6)

где *a*,*b* - коэффициенты уравнения прямой, проходящей через первую и последнюю точки множества (5).

Рис. 1. Зависимость между угловыми расстояниями θ_s и их положением в ЗК

Метод К-vector позволяет определить индексы границ диапазона элементов ЗК, внутри которого расположено искомое расчетное угловое расстояние. Данная операция производится в несколько этапов. Сначала строится К-вектор (рисунок 1), в соответствии с формулой [5]:

№5 2016 Вестник КазНИТУ

$$K(1) = 1, \ K(s) = int\left(\frac{\theta_q - b}{a}\right), \ s = 2,..,M$$
, (7)

где *K*(*s*) - *q*-ый элемент К-вектора; int(*x*) - функция, округляющая значение *x* до целого. После этого определяются индексы границ диапазона элементов К-вектора, внутри которого лежит искомое угловое расстояние θ_{req} [5]:

$$k_1 = bottom\left\{\left[\frac{(\theta_{req} - 2\xi) - b}{a}\right]\right\}, k_2 = top\left\{\left[\frac{(\theta_{req} + 2\xi) - b}{a}\right]\right\},\tag{8}$$

где ξ - точность, с которой могут быть определены границы диапазона $\xi = \varepsilon \max[|D_{\min}|, |D_{\max}|], \varepsilon \approx 2.22 \cdot 10^{-16}; top(x)$ - функция, определяющая наибольшее целое число, близкое к *x*; *bottom* (*x*) - функция, определяющая наименьшее целое число, близкое к *x*.

Далее определяются индексы границ диапазона элементов ЗК, внутри которого лежит θ_{req} (рисунок 1) [8] и соответствующие им угловые расстояния [5]:

$$s_{\rm st} = \mathbf{K}(k_1) + 1, \ s_{nd} = \mathbf{K}(k_2),$$
(9)

$$\theta_{\rm st} = ak_1 + b + 1, \ \theta_{nd} = ak_2 + b \,. \tag{10}$$

После того как определены индексы границ диапазона поиска внутри ЗК, производится поиск расчетного углового расстояния путем его прямого сопоставления с элементами внутри найденного диапазона. Описанная процедура производится для каждого углового расстояния рассматриваемой триады псевдозвезд. Триада считается распознанной и алгоритм распознавания завершенным в том случае, когда для всех псевдозвезд, входящих в триаду, найдены соответствия в ЗК.

После проведения распознавания становятся известны координаты трех звезд в системе координат ЗД и соответствующие им инерциальные координаты в ЗК. Алгоритмы определения ориентации ЗД сводятся к определению матрицы аффинного преобразования, переводящей координаты звёзд из системы координат ЗД в инерциальную систему координат. При этом искомая матрица аффинного преобразования является решением оптимизационной задачи вида [6]:

$$L(A) = \min \frac{1}{2} \sum_{i=1}^{n} a_i \left\| \overrightarrow{V_{u_i}} - A \overrightarrow{v_{u_i}} \right\|,\tag{11}$$

где n - количество идентифицированных звезд; $\overrightarrow{V_{u_i}}$ - вектор координат i-ой звезды в инерциальной системе координат; A - матрица аффинного преобразования; $\overrightarrow{v_{u_i}}$ - вектор координат i-ой звезды в системе координат ЗД; a_i - положительные константы.

В данной работе оптимизационная задача (11) решается с помощью применения сингулярного разложения.

2 Функциональные испытания программно-математического обеспечения звездного датчика

Целью функциональных испытаний является определение точности вычисления ориентации ЗД при различных конфигурациях с помощью программного имитационного комплекса.

Для проведения функциональных испытаний ПМО казахстанского ЗД разработан программный имитационный комплекс, включающий имитатор звездного неба и блок анализа результатов.

В имитаторе звездного неба производится моделирование динамического изменения звездного неба с учетом шумов детектора, дисторсии оптической системы и функции рассеяния точки (PSF). Файлы PSF берутся непосредственно с САПР оптической системы ZeMax с шагом 0,2.5, 3.5, 7.5 и 10 градусов от оптической оси.

Физико-математические науки

Имитатор звездного неба отправляет кадр изображения по сети Ethernet в ПМО звездного датчика, запущенное на отладочной плате ZC702, где производится цикл вычисления по определению ориентации ЗД. Результат вычисления отправляется в блок анализа результатов, где осуществляется расчет невязки расчетной ориентации с истиной модельной ориентацией ЗД.

Блок анализа результатов позволяет визуально осуществлять построение ориентации ЗД и производить оценку погрешности вычислений ПМО ЗД.

процессе функциональных испытаний ПМО казахстанского звездного В датчика рассматривались следующие конфигурации:

1. Базовая. С использованием идеальной симметричной PSF, без внесений каких - либо искажений;

2. Моделирование функции рассеяния точки (PSF). С использованием PSF, полученных в результате проектирования и моделирования оптической системы ЗД в среде Zemax;

3. Темновой шум+PSF. С использованием маски с максимальными значениями шумов снятых с детектора ЗД (выдержка 300 мс) + моделирование остальных шумов +PSF;

4. Дисторсия 0,5%. С использованием модели бочкообразной дисторсии, без применения остальных искажений;

5. Дисторсия 1%;

6. Дисторсия 1,5%;

7. Дисторсия 2%;

8. *PSF+Темновой шум+Дисторсия 0,08%*. Комплексный тест с максимально большим значением дисторсии, при котором ПМО может определять ориентацию.

В таблицах 1-8 приведены результаты тестирования ПМО звездного датчика при 4-х угловых положениях 3Д (Тест №1-4) с возрастанием количества звезд в поле зрения 3Д. В каждом положении проведено по 4-6 измерений для накопления статистических данных и вычисления средних значений.

В таблице 9 приведены обобщающие результаты функциональных испытаний ПМО ЗД для четырех вариантов тестирования. Как видно из таблицы 9, с возрастанием количества звезд точность в целом улучшается. За оценочный параметр берется погрешность определения угла поворота вокруг оптической оси ЗД, так как эта ошибка, как правило, больше, чем погрешность определения ориентации оптической оси ЗД ввиду особенности общего подхода определения ориентации. В тесте №З наблюдается ухудшение точности из-за плохой конфигурации звезд. В тестах по дисторсии при количестве звезд менее 5 наблюдается проблемы с верификацией триады и результаты определения недостоверны, если дисторсия выше 0.5%. В тесте №3 по дисторсии в целом наблюдается повышенная точность в сравнения с остальными тестами из-за расположения звезд ближе к центру оптической оси.

тиозпіци т. с	Tucinga 1. Chineon sbeski nenoribsobannibix din onpedarennih opnennagini ski tu ni 70,1 neno e i,1 toni e							
ID в каталоге	Х, пиксели	Ү, пиксели	RA	DEC	Звездная величина			
1916	687.354	148.814	64.006940	-51.486192	4.36			
2088	524.698	328.886	68.499217	-55.045069	3.26			
2351	267.588	30.878	76.241940	-49.577847	5.35			
2356	286.566	461.052	76.377635	-57.472470	4.88			

Таблица 1. Список звезл, использованных для определения ориентации 3Д Turn: 70, Pitch

	Табли	ца 2. 🤇	Рунк	циональный	тест п	ри о	риентации	<u>ЗД</u>	Turn:	70,	Pitch:	54,	Roll	:0
--	-------	---------	------	------------	--------	------	-----------	-----------	-------	-----	--------	-----	------	----

тиолици 2. Функ	циональный тест пр	п орисптации эд 1	um. 70, mem. 54,	Kon. v
Вариант теста №1	Кватернион истиной	Вычисленный	Погрешность	Погрешность
	ориентации ЗД	кватернион	определения	определения угла
		ориентации ЗД	ориентации	поворота вокруг
			оптической оси ЗД,	оптической оси, угл.
			угл. сек.	сек.
Базовый	x - 0,26039827	x - 0,26038495	5,81882593	12,06270804
	y - 0,37188724	y - 0,37191167		
	z - 0,51106036	z - 0,51104420		
	w - 0,	w - 0,72987342		
PSF	x - 0,26039827	x - 0,26049408	11,59645095	45,30575314
	y - 0,37188724	y - 0,37185040		
	z - 0,51106036	z - 0,51109093		
	w - 0,72986984	w - 0,72983295		

• Физика-математика ғылымдары

Темновой шум +PSF	x - 0,26039827	x - 0,26051158	11,22368923	55,70215205
	y - 0,37188724	y - 0,37183735		
	z - 0,51106036	z - 0,51110166		
	w - 0,72986984	w - 0,72982591		
Дисторсия 0,5%	x - 0,27309656	x - 0,27308720	3,46230872	7,65722467
	y - 0,36291137	y - 0,36292723		
	z - 0,51747286	z - 0,51746434		
	w - 0,72521406	w - 0,72521573		
Дисторсия 1%	Ориентация не	-	-	-
	определена			
Дисторсия 1,5%	Ориентация не	-	-	-
	определена			
Дисторсия 2%	Ориентация не	-	-	-
	определена			
PSF+Темновой	x - 0,27309656	x - 0,27307720	23, 23460872	89, 24676572
шум+Дисторсия 0,5%	y - 0,36291137	y - 0,36291723		
	z - 0,51747286	z - 0,51743434		
	w - 0,72521406	w - 0,72529573		

Таблица 3. Список звезд, использованных для определения ориентации ЗД Turn: 12, Pitch: 32, Roll: 16

ID в	Χ,	Υ,	RA, град.	DEC, град.	Звездная
каталоге	пиксели	пиксели			величина
12265	788.813	498.910	340.439199	29.307543	4.80
12273	784.735	446.805	340.750628	30.221193	3.20
12449	516.462	501.672	345.944086	28.083150	2.81
12604	367.396	246.975	350.478922	31.812429	5.29
12697	226.024	228.770	353.488658	31.325160	5.29
12764	77.659	290.427	355.998124	29.361573	5.19

Таблица 4. Функциональный тест при ориентации ЗД Turn: 12, Pitch: 32, Roll: 16

Вариант теста №2	Кватернион истиной	Вычисленный	Погрешность	Погрешность
	ориентации ЗД	кватернион	определения	определения угла
		ориентации ЗД	ориентации	поворота ЗД вокруг
			оптической оси ЗД,	оптической оси, угл.
			угл. сек.	сек.
Базовый	x - 0,16158046	x - 0,16156518	4,24577833	5,61461647
	y - 0,25747558	y - 0,25746363		
	z - 0,13765250	z - 0,13765338		
	w - 0,94268227	w - 0,94268805		
PSF	x - 0,16158046	x - 0,16150409	15,34507284	30,78935949
	y - 0,25747558	y - 0,25745162		
	z - 0,13765250	z - 0,13764296		
	w - 0,94268227	w - 0,94270331		
Темновой шум +PSF	x - 0,16158046	x - 0,16148129	13,65335883	41,00448311
	y - 0,25747558	y - 0,25745893		
	z - 0,13765250	z - 0,13763595		
	w - 0,94268227	w - 0,94270623		
Дисторсия 0,5%	x - 0,16158046	x - 0,16162089	1,57568834	17,28060065
_	y - 0,25747558	y - 0,25747046		
	z - 0,13765250	z - 0,13765965		
	w - 0,94268227	w - 0,94267571		
Дисторсия 1%	x - 0,16158046	x - 0,16162345	6,83794085	17,47758774
	y - 0,25747558	y - 0,25748435		
	z - 0,13765250	z - 0,13765709		
	w - 0,94268227	w - 0,94267184		

• Физико-математические науки

Дисторсия 1,5%	x - 0,16158046	x - 0,16149107	9,60081141	39,89079979
	y - 0,25747558	y - 0,25751108		
	z - 0,13765250	z - 0,13762948		
	w - 0,94268227	w - 0,94269127		
Дисторсия 2%	x - 0,16158046	x - 0,16147365	16,03480937	48,40439213
	y - 0,25747558	y - 0,25752890		
	z - 0,13765250	z - 0,13762215		
	w - 0,94268227	w - 0,94269043		
PSF+Темновой	x -0,16158046	x - 0,16132280	8,23345476	111,5827427
шум+Дисторсия 0,08%	y - 0,25747558	y - 0,25752458		
	z - 0,13765250	z - 0,13759798		
	w - 0,94268227	w - 0,94272095		

Таблица 5. Список звезд, использованных для определения ориентации ЗД Turn: 17, Pitch: 25, Roll: 0

ID в каталоге	Х, пикселях	Ү, пикселях	RA, град.	DEC, град.	Звездная величина
279	831.095	24.231	9.638391	29.311115	4.60
342	736.397	305.078	11.834458	24.266949	4.32
414	614.667	354.743	14.301532	23.417505	4.68
471	509.320	461.812	16.421237	21.473188	5.33
523	436.103	485.679	17.863482	21.034616	4.94
538	408.972	292.251	18.437314	24.583665	4.94
570	341.356	145.335	19.866705	27.264002	4.76
741	36.349	516.139	25.623383	20.266659	5.49

Таблица 6. Функциональный тест при угловой ориентации ЗД Turn: 17, Pitch: 25, Roll: 0

Вариант теста №3	Кватернион истиной	Вычисленный	Погрешность	Погрешность
	ориентации ЗД	кватернион	определения	определения угла
		ориентации ЗД	ориентации	поворота ЗД
			оптической оси ЗД,	вокруг
			угл. сек.	оптической оси,
				угл. сек.
Базовый	x - 0,03199181	x - 0,03201573	3,42382484	5,25134806
	y - 0,21406221	y - 0,21405044		
	z - 0,14430574	z - 0,14431180		
	w - 0,96557224	w - 0,96557313		
PSF	x - 0,03199181	x - 0,03183473	5,39328105	31,92745264
	y - 0,21406221	y - 0,21407388		
	z - 0,14430574	z - 0,14427704		
	w - 0,96557224	w - 0,96557915		
Темновой шум	x - 0,03199181	x - 0,03181852	5,32167988	72,81028896
	y - 0,21406221	y - 0,21407704		
	z - 0,14430574	z - 0,14427452		
	w - 0,96557224	w - 0,96557933		
Дисторсия 0,5%	x - 0,03199181	x - 0,03202326	1,68814547	13,87395287
_	y - 0,21406221	y - 0,21405408		
	z - 0,14430574	z - 0,14431511		
	w - 0,96557224	w - 0,96557158		
Дисторсия 1%	x - 0,03199181	x - 0,03191967	8,48906073	31,60893598
	y - 0,21406221	y - 0,21409252		
	z - 0,14430574	z - 0,1442942		
	w - 0,96557224	w - 0,96556962		
Дисторсия 1,5%	x - 0,03199181	x - 0,03192721	10,80941087	28,62107205
	y - 0,21406221	y - 0,21409661		
	z - 0,14430574	z - 0,14429753		
	w - 0,96557224	w - 0,96556801		

• Физика-математика ғылымдары

Дисторсия 2%	x - 0,03199181	x - 0,03176348	28,71289203	100,10855779
	y - 0,21406221	y - 0,21416187		
	z - 0,14430574	z - 0,14427201		
	w - 0,96557224	w - 0,96556270		
PSF+Темновой	x - 0,03199181	x - 0,03151057	22,76013180	205,74837883
шум+Дисторсия 0,08%	y - 0,21406221	y - 0,21417767		
	z - 0,14430574	z - 0,14422975		
	w - 0,96557224	w - 0,96557385		

	Таблица 7.	Список звезд,	использованных ,	для определения	ориентации	Turn: 61,	Pitch: 4	4,
Roll:	103			_	_			

ID в каталоге	Х, пикселях	Ү, пикселях	RA, град.	DEC, град.	Звездная величина
1631	643.836	506.384	55.731308	47.787498	2.95
1652	367.464	437.851	56.298436	42.578522	3.98
1761	669.858	389.335	58.992461	47.871396	5.34
1769	822.609	414.981	59.152588	50.695259	5.42
1778	254.283	283.771	59.463491	40.010135	2.79
1786	29.169	223.669	59.741254	35.790998	4.04
1837	823.301	326.064	61.645941	50.351182	4.28
1855	687.145	273.930	62.165405	47.712451	4.02
1905	320.514	117.228	63.722128	40.483611	4.97
1906	738.319	228.324	63.724402	48.409287	4.42

Таблица 8. Функциональный тест при угловой ориентации ЗД Turn: 61, Pitch: 44, Roll: 103

Вариант теста №4	Кватернион истиной	Вычисленный	Погрешность	Погрешность	
	ориентации ЗД	кватернион	определения	определения угла	
		ориентации ЗД	ориентации	поворота ЗД вокруг	
			оптической оси ЗД,	оптической оси, угл.	
			угл. сек.	сек.	
Базовый	x - 0,50685978	x - 0,50685745	3,98058466	1,95707742	
	y - 0,56921107	y - 0,56920439			
	z - 0,04033983	z - 0,04033796			
	w - 0,64611501	w - 0,64612287			
С моделированием	x - 0,50685978	x - 0,50683540	8,64751687	15,68631385	
PSF	y - 0,56921107	y - 0,56919664			
	z - 0,04033983	z - 0,04035006			
	w - 0,64611501	w - 0,64614624			
С темновым шумом	x - 0,50685978	x - 0,50681746	9,19902001	26,82817225	
+PSF	y - 0,56921107	y - 0,56919521			
	z - 0,04033983	z - 0,04036417			
	w - 0,64611501	w - 0,64616066			
Дисторсия 0,5%	x - 0,50685978	x - 0,50682342	7,21284974	19,17076529	
	y - 0,56921107	y - 0,56921041			
	z - 0,04033983	z - 0,04035065			
	w - 0,64611501	w - 0,64614350			
Дисторсия 1%	x - 0,50685978	x - 0,50700837	17,65644219	83,25357458	
	y - 0,56921107	y - 0,56918478			
	z - 0,04033983	z - 0,04023417			
	w - 0,64611501	w - 0,64602816			
Дисторсия 1,5%	x - 0,50685978	x - 0,50708473	21,42916713	128,94369928	
	y - 0,56921107	y - 0,56918222	, í	,	
	z - 0,04033983	z - 0,04017407			
	w - 0,64611501	w - 0,64597428			
Дисторсия 2%	x - 0,50685978	x - 0,50717056	31,90276395	176,23720897	
· · · ·	y - 0,56921107	y - 0,56916732	,		

• Физико-математические науки

	z - 0,04033983 w - 0,64611501	z - 0,04011785 w - 0,64592344		
PSF+Темновой	x - 0,50685978	x - 0,50719851	33,18832256	193,05276134
шум+Дисторсия	y - 0,56921107	y - 0,56916660		
0,08%	z - 0,04033983	z - 0,04009555		
	w - 0,64611501	w - 0,64590353		

Таблица 9. Сводная таблица по результатам функциональных испытаний ПМО звездного датчика

	Тест №1	Тест №2	Тест №3	Тест №4
Количество звезд в поле зрения	4	6	8	12
Базовая конфигурация. Погрешность				
определения угла поворота вокруг	12,06270804	5,61461647	5,25134806	1,95707742
оптической оси, угл. сек.				
С моделированием PSF, Погрешность				
определения угла поворота вокруг	45,30575314	30,78935949	31,92745264	15,68631385
оптической оси, угл. сек.				
С темновым шумом +PSF, Погрешность				
определения угла поворота вокруг	55,70215205	41,00448311	72,81028896	26,82817225
оптической оси, угл. сек.				
Дисторсия 1,5%, Погрешность				
определения угла поворота вокруг	-	39,89079979	28,62107205	128,94369928
оптической оси, угл. сек.				
PSF+Темновой шум+Дисторсия 1,5%,				
Погрешность определения угла поворота	-	111,5827427	205,74837883	193,05276134
вокруг оптической оси, угл. сек.				

Заключение

В данной статье рассмотрены основные этапы разработки и тестирования ПМО казахстанского ЗД. Описаны математические модели и алгоритмы, положенные в основу разработки ПМО предварительной обработки изображения, распознавания звезд и определения ориентации. Приведены результаты функциональных испытаний ПМО звездного датчика с помощью программного имитационного комплекса, включающего имитатор звездного неба и блок анализа результатов.

В целом функциональные испытания показали хорошие результаты работы алгоритмов, реализованных в ПМО звездного датчика. Тесты, проведенные для неидеальной функции рассеяния точки, с учетом шумов детектора и дисторсии оптической системы, показали погрешность определения ориентации оптической оси 3Д не хуже 9.6 угл.сек. и погрешность определения угла поворота вокруг оптической оси 3Д не хуже 45.5 угл.сек.

ЛИТЕРАТУРА

[1] Liebe C.C. Pattern recognition of star constellations for spacecraft applications // IEEE Aeronaut. Electron. Syst. Mag. – Vol.10. – 1992. – P. 2–12

[2] Baldini D., Barni M., Foggi A., Benelli G., Mecocci, A. A new star-constellation matching algorithm for satellite attitude determination // ESA Journal. – Vol.17. -1993. – P. 185–198

[3] Quine B.M., Whyte H.F. A fast autonomous star-acquisition algorithm for spacecraft // Control Engin. Pract. - Vo.4. - 1996. - P. 1735–1740

[4] Padgett C., Delgado, K.K. A grid algorithm for autonomous star identification // IEEE Trans. Aerospace Electron. Syst. – Vo.33. – 1997. – P. 202–213.

[5] Mortari D. A fast on-board autonomous attitude determination system based on a new star-id technique for a wide FOV star tracker // Adv. Astronaut. Sci. – Vol. 93. – P. 893–903

[6] Markley F. Landis, Mortari D. How to estimate attitude from vector observations // AAS/AIAA Astrodynamics specialist conference. – 1999.

Работа выполнена в рамках республиканской бюджетной программы 076 «Прикладные научные исследования в области космической деятельности».

Елубаев С.А., Бопеев Т.М., Алипбаев К.А., Сухенко А.С.

Жұлдыз датчигінің бағдарламалық және математикалық қамтамасыз етуін жасау және тестілеу

Түйіндеме. Бұл мақала Қазақстандық жұлдыз датчигінің бағдарламалық және математикалық қамтамасыз етуін жасауға және тестілеуге арналған. Суретті алдын ала өңдеудің, жұлдыздарды танып білу және бағдарлауды анықтаудың бағдарламалық-математикалық қамтамасыз етуін жасаудың негізі болып табылатын математикалық модельдер мен алгоритмдер сипатталған. Жұлдызды аспан имитаторы мен нәтижелер талдауы блогынан тұратын бағдарламалық имитациялық жиынтықтың көмегімен жұлдыз датчигінің бағдарламалық-математикалық қамтамасыз етуін тестілеу нәтижелері келтірілген.

Түйінді сөздер: жұлдыз датчигі, бағдарламалық-математикалық қамтамасыз ету, бағдарламалық имитациялық жиынтық, жасау, тестілеу

Yelubayev S., Bopeyev T., Alipbayev K., Sukhenko A.

Development and testing of software and mathematical support of star tracker

Summary. This article is devoted to the development and testing of mathematical support and software of Kazakhstani star tracker. Mathematical models and algorithms that are laid to the basis of software and mathematical support development of preliminary image processing, stars identification and attitude determination are described. Results of star tracker software and mathematical support testing with the help of program simulation complex including starry sky simulator and results analysis block are given.

Key words: star tracker, software and mathematical support, program simulation complex, development, testing.

ӘОЖ: 531.1:517.972.8

А.А. Каныбекова, С.Б. Ерназарова

(Қ.А. Ясауи атындағы Халықаралық қазақ-түрік университеті, Түркістан, Қазақстан Республикасы, <u>saltanat.ernazarova@ayu.edu.kz</u>)

ТҰТАС ЖАЗЫҚ ДЕНЕДЕГІ БЕЙСТАЦИОНАРЛЫҚ ЖЫЛУ АЛМАСУ ПРОЦЕСІН ШЕКТІ ЭЛЕМЕНТТЕР ӘДІСІМЕН ЗЕРТТЕУ

Аңдатпа. Тұтас жазық денеде орын алатын бейстационарлық жылу алмасу процесін ішкі жылу көздерінің әсерін ескеріп зерттеуге арналған. Аталған процесс нәтижесінде денеде қалыптасатын температуралық өрістің деңгейіне әсер ететін сыртқы факторларды анықтау, олардың әсерін адамның қажеттігіне ыңғайлы деңгейде ұстап тұру мәселелерін шешу қазіргі таңда кезек күттірмейтін мәселеге айналып отыр. Бейстационарлық жылуалмасу құбылысы өтпелі құбылыс, мұндай құбылыстардың, көп жағдайда, уақытқа тәуелсіз, стационарлық күйге ұласатыны айқын.

Кілт сөздер: температура, шекті элементтер әдісі, жылуөткізгіштік теңдеуі, шекаралық шарттар, температуралық өріс.

Тұтас денедегі бейстационар жылу алмасу процесін өзара көрші екі стационар температуралық күйлер арасындағы өтпелі жағдай ретінде қарастыру қабылданған [1]. Алайда, аталған физикалық процесс келесі стационарлық күйге жетіп тұрақталмай, дамуын әрі қарай жалғастыра беруі де мүмкін. Процестің алғашқы түрі, денеде қалыптасатын температуралық өрістің бір стационар күйден екінші стационар күйге дейін өзгеру заңдылықтары зерттеледі.

Бірөлшемді тұтас денедегі бейстационарлық жылуөткізгіштік келесі дифференциалдық теңдеу арқылы сипатталады [1]:

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + S \,. \tag{1}$$

Бұл жерде T(x,t)- дененің координатасы x болатын нүктесінің уақыттың t сәтіндегі белгісіз температурасы, S - шекаралық шарттар мен жылу көздерінің әсерін ескеретін қосылғыш, kжылуөткізгіштік коэффициенті, c мен ρ коэффициенттері денені құрайтын материалдың тығыздығы мен массалық жылусыйымдылығын көрсетеді, демек, ρc көбейтіндісі көлемдік жылусыйымдылықты береді.